INTRODUCTION

Background

* Jets or plumes of gas enter liquid vertically would break off to form a train
of bubbles that rises vertically in a variety of industrial and geological

systems

* Air jets break into bubbles due to a Kelvin-Helmhotz like instability [1]

These jets of bubbles locate close to one another in many of such systems

This enables them to interact and, therefore, affecting bubble dynamics
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Figure 1. Bubble pinch-off. Image from [1]. Figure 2. Asynchronous bubble formation.

Image from [2].

Previous Work

* Two bubble jets, three patterns:
O Synchronous
O Alternating
O Asynchronous
* The pattern depend on the air flowrate
* Higher flowrates tend to result in more asynchronous patterns [3]
* Bubble formation at one port pushes the air jet another port to break-off [4]

* The rising bubble at one port would lead to a convection that suppresses

the bubble formation at a further port [5]

Experimental

* What does the bubbling pattern look like at higher flowrate?

e How does

Theoretical

* Why do bubbling jets exhibit synchronicity at lower flowrate?
* Why do they become asynchronous at higher flowrate?

* Can we use a simplified physical model to explain the stability of these two

patterns?
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Experimental Setup

Height: 100 cm Since water can be seen as an incompressible fluid, k;, /k,,, >>1, leading to

Width: 20 cm

an alternating pattern when the water between ports behaves laminarly

Thickness: 1 cm Original

An increased separation distance lowers the effective spring constant of the

water between two ports, due to turbulent complications

Injection ports:

An increased flowrate increases the oscillatory amplitude, increasing the
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Figure 3. Experimental setup.
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* A coupled harmonic oscillator model can be used to model the system’s

Result and Ohservations behavior

Coupled Harmonic Oscillator Model

: Coupled, dampened, forced
Experimental Results

harmonic oscillator

* QOur results confirms that even at a higher basis, bubbles break off at an * The spring constants relate to

Figure 10. Diagram of a coupled pinch-off action

increasing flowrate exhibits a higher alternating pattern compressibility of air and

A smaller separation distance also increases the alternating pattern water
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